Abstract

Recent phylogenetic studies based on DNA sequence data indicate that the tropical African bee genus Macrogalea is the sister group to the remaining extant allodapine fauna, whereas previously it was thought to be a distal group. This leads to some fundamental changes in our understanding of social evolution in the allodapines. Earlier studies suggested that Macrogalea showed only weak forms of social behaviour and these were not well characterized. However, large samples of Macrogalea zanzibarica presented here show that this species exhibits marked social behaviour. Nearly half of nests collected contained two or more adult females, with up to 10 females per nest. Brood are reared progressively and brood ages within colonies are staggered, giving rise to colonies with very mixed age structures and therefore frequent opportunities for alloparental care. Ovarian dissections indicate non-simple forms of reproductive partitioning within colonies and most multi-female colonies show evidence that more than one female has contributed to egg production, though reproductive episodes among colony members are frequently asynchronous. Some females show signs of much higher wing wear than their nestmates, but always show signs of previous reproduction. Reproductive division of labour appears to be temporally marked, ovarian differentiation among nestmates is linked to relative body size, but permanent worker-like or queen-like castes appear to be absent. This is similar to the communal, continuously brooded and multivoltine behaviour of some tropical halictine species and may be due to the aseasonal nature of brood development in tropical regions. Patterns of per capita brood production indicate large benefits to multi-female nest occupancy, and sex allocation is strongly female biased. These findings strongly suggest that the capacity for complex social interactions and alloparental care is an ancestral trait for all of the extant allodapine lineages. Therefore comparisons among extant allodapines are unlikely to throw light on the initial origin of social behaviour, though they may uncover origins of true caste behaviour and reversals to solitary nesting. Sex ratios in Macrogalea and most other allodapine genera, spanning a broad phylogenetic and ecological range, suggest that one or more allodapine traits have provided persistent selection for female-biased sex allocation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call