Abstract
The present day power scenario is to improve the deregulated structure of power pool so as maximize the overall welfare of the electricity market. Hence, this paper presents a novel methodology to maximize the social welfare (i.e. the surplus of market participants) with thyristor-controlled series compensator using grey wolf optimization algorithm. Thyristor-controlled series compensator can redistribute the power flow in the network thereby aids mitigating congestion and improves the social welfare of the system. Optimal placement and sizing of thyristor-controlled series compensator is a complex combinatorial analysis, hence grey wolf optimization algorithm, which is a typical metaheuristic algorithm based on leadership and hunting of grey wolves in nature is applied to solve the test cases. An optimal power flow problem is proposed to maximize the social welfare using grey wolf optimization with and without thyristor-controlled series compensator. This model is tested with a modified IEEE 14 and IEEE 30 bus test systems. The results obtained using grey wolf optimization is compared with that obtained using genetic algorithm. Results indicate that grey wolf optimization outperforms genetic algorithm in maximizing social welfare either with thyristor-controlled series compensator or without thyristor-controlled series compensator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Engineering & Education
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.