Abstract

Numerous animal species emit vocalizations in response to various social stimuli. The neural basis of vocal communication has been investigated in monkeys, songbirds, rats, bats, and invertebrates resulting in deep insights into motor control, neural coding, and learning. Mice, which recently became very popular as a model system for mammalian neuroscience, also utilize ultrasonic vocalizations (USVs) during mating behavior. However, our knowledge is lacking of both the behavior and its underlying neural mechanism. We developed a novel method for head-restrained male mice (HRMM) to interact with non-restrained female mice (NRFM) and show that mice can emit USVs in this context. We first recorded USVs in a free arena with non-restrained male mice (NRMM) and NRFM. Of the NRMM, which vocalized in the free arena, the majority could be habituated to also vocalize while head-restrained but only when a female mouse was present in proximity. The USVs emitted by HRMM are similar to the USVs of NRMM in the presence of a female mouse in their spectral structure, inter-syllable interval distribution, and USV sequence length, and therefore are interpreted as social USVs. By analyzing the vocalizations of NRMM, we established criteria to predict which individuals are likely to vocalize while head fixed based on the USV rate and average syllable duration. To characterize the USVs emitted by HRMM, we analyzed the syllable composition of HRMM and NRMM and found that USVs emitted by HRMM have a higher proportion of USVs with complex spectral representation, supporting previous studies showing that mice social USVs are context dependent. Our results suggest a way to study the neural mechanisms of production and control of social vocalization in mice using advanced methods requiring head fixation.

Highlights

  • Vocalizations are a part of natural mouse behavior (Eric Hill, 1944; Sewell, 1968)

  • In order to test if HRMM would show ultrasonic vocalization (USV) courtship behavior when head-fixed and to characterize this behavior, we designed a protocol for gradual habituation (Figures 1A,B and Methods)

  • We have demonstrated for the first time that mice are able to emit social vocalizations when they are held head-restrained on a running wheel

Read more

Summary

Introduction

Vocalizations are a part of natural mouse behavior (Eric Hill, 1944; Sewell, 1968). When a male mouse encounters a female, the male enacts a courtship behavior which includes emission of vocalizations in the ultrasonic frequency range. The high temporal correlation between the ultrasonic vocalizations produced by male and female mice indicates that they play a role in social interactions and courtship behavior (Neunuebel et al, 2015). These ultrasonic vocalization (USV) syllables mostly consist of single or dual narrow-band frequency chirps with rapid frequency jumps, creating complex spectral structure (Holy and Guo, 2005; Egnor and Seagraves, 2016; Matsumoto and Okanoya, 2016). Direct electrophysiological and optical recordings from relevant brain areas during production of USVs have not been performed

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call