Abstract
Today, one of important field is social touch gesture recognition for touch modality, which can lead to highly efficient and realistic human–robot interaction. Touch is an important interaction modality in social interaction, for instance touch can communicate emotions and can intensify emotions communicated by other modalities. In this paper, the touch gesture recognition is performed using a dataset that previously measured for numerous subjects that perform various social gestures. This dataset is dubbed as the corpus of social touch (CoST), where touches were performed on a mannequin arm. The T-Distributed Stochastic Neighbor Embedding (T-SNE) algorithm is used to reduce the dimensions of the input data. The T-SNE algorithm was used as a preprocessing stage before classification operations. The output of the T-SNE is fed to the support vector machine (SVM). The performance of the proposed systems was evaluated using leave-one-subject-out cross-validation method. The range of recognition results 31.6% to 81.4%, Mean = 61.7% and Standard Deviation = 10.05%. The proposed method can recognize gestures in nearly real time after acquiring a minimum number of frames (629 ms). which is comparable with the results of Jung et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.