Abstract

Social networks with location enabling technologies, also known as geo-social networks, allow users to share their location-specific activities and preferences through check-ins. A user in such a geo-social network can be attributed to an associated location (spatial), her preferences as keywords (textual), and the connectivity (social) with her friends. The fusion of social, spatial, and textual data of a large number of users in these networks provide an interesting insight for finding meaningful geo-social groups of users supporting many real-life applications, including activity planning and recommendation systems. In this article, we introduce a novel query, namely, Top- k Flexible Socio-Spatial Keyword-aware Group Query (SSKGQ), which finds the best k groups of varying sizes around different points of interest (POIs), where the groups are ranked based on the social and textual cohesiveness among members and spatial closeness with the corresponding POI and the number of members in the group. We develop an efficient approach to solve the SSKGQ problem based on our theoretical upper bounds on distance, social connectivity, and textual similarity. We prove that the SSKGQ problem is NP-Hard and provide an approximate solution based on our derived relaxed bounds, which run much faster than the exact approach by sacrificing the group quality slightly. Our extensive experiments on real data sets show the effectiveness of our approaches in different real-life settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.