Abstract
Social recommendation has been playing an important role in suggesting items to users through utilizing information from social connections. However, most existing approaches do not consider the attention factor causing the constraint that people can only accept a limited amount of information due to the limited strength of mind, which has been discovered as an intrinsic physiological property of human by social science. We address this issue by resorting to the concept of limited attention in social science and combining it with machine learning techniques in an elegant way. When introducing the idea of limited attention into social recommendation, two challenges that fail to be solved by existing methods appear: i) how to develop a mathematical model which can optimally choose a subset of friends for each user such that these friends' preferences can best influence the target user, and ii) how can the model learn an optimal attention for each of these selected friends. To tackle these challenges, we first propose to formulate the problem of optimal limited attention in social recommendation. We then develop a novel algorithm through employing an EM-style strategy to jointly optimize users' latent preferences, optimal number of their best influential friends and the corresponding attentions. We also give a rigorous proof to guarantee the algorithm's optimality. The proposed model is capable of efficiently finding an optimal number of friends whose preferences have the best impact on target user as well as adaptively learning an optimal personalized attention towards every selected friend w.r.t. the best recommendation accuracy. Extensive experiments on real-world datasets demonstrate the superiority of our proposed model over several state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.