Abstract

An in vivo autoradiographic procedure was employed to visualize local changes in brain opioid receptor occupancy in juvenile rats. This procedure is based on the assumption that released endogenous ligand will exclude exogenously applied tracer, in this case [ 3H]diprenorphine, from opioid receptors. Increases in availability of opioid peptides will then result in decreased opioid receptor binding. From behavioral studies there is ample evidence that opioid systems are involved in the regulation of social play behavior in juvenile rats. In the present study, changes in regional brain opioid activity as a result of social isolation-induced social play behavior were monitored. Twenty-one-day-old rats were socially isolated for 0, 3.5 or 24 h prior to testing, and tested alone or in a dyadic encounter. After behavioral testing, [ 3H]diprenorphine was administered and the brain was prepared for autoradiography. Social isolation caused increases in social behavior (dyadic encounters) but not in non-social behavior (singly tested animals). Modest differences in brain opioid receptor binding due to social isolation, social play behavior, or an interaction of the two, were found in claustrum, nucleus accumbens, globus pallidus, paraventricular and arcuate nuclei of the hypothalamus, and the dorsolateral and paratenial thalamic nuclei. These results support the notion that opioid systems are involved in the regulation of social play behavior. In addition, the observation of changes in opioid binding in areas involved in reward processes, adds evidence to the hypothesis that opioid systems are involved in the regulation of the rewarding aspects of social plah in juvenile rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call