Abstract
Fake profiles play an important role in advanced persisted threats and are also involved in other malicious activities. The present paper focuses on identifying fake profiles in social media. The approaches to identifying fake profiles in social media can be classified into the approaches aimed on analysing profiles data and individual accounts. Social networks fake profile creation is considered to cause more harm than any other form of cyber crime. This crime has to be detected even before the user is notified about the fake profile creation. Many algorithms and methods have been proposed for the detection of fake profiles in the literature. This paper sheds light on the role of fake identities in advanced persistent threats and covers the mentioned approaches of detecting fake social media profiles. In order to make a relevant prediction of fake or genuine profiles, we will assess the impact of three supervised machine learning algorithms: Random Forest (RF), Decision Tree (DT-J48), and Naive Bayes (NB).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.