Abstract

The study of collective behavior in social systems has recently witnessed an increasing number of works relying on computational and agent-based models. These models use very simplistic schemes for the micro-processes of social influence and are more interested in the emerging macro-level social behavior. Agent-based models for social phenomena are very similar in spirit to the statistical physics approach. The agents update their internal state through an interaction with their neighbors and the emergent macroscopic behavior of the system is the result of a large number of these interactions. The behavior of all of these models has been extensively studied for agents located on the nodes of regular lattices or possessing the ability to interact homogeneously with each other. But as described in Chapter 2, interactions between individuals and the structure of social systems can be generally represented by complex networks whose topologies exhibit many non-trivial properties such as small-world, high clustering, and strong heterogeneity of the connectivity pattern. Attention has therefore recently shifted to the study of the effect of more realistic network structures on the dynamical evolution and emergence of social phenomena and organization. In this chapter, we review the results obtained in four prototypical models for social interactions and show the effect of the network topology on the emergence of collective behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call