Abstract

Network theory is commonly used to reveal social interactions and the organisation of interconnected nodes—but has not yet been applied to animal invasions. Non-native species invasions are now considered one of the foremost threats to natural ecosystems and biodiversity. This is the first attempt to assess social network properties within a freshwater fish assemblage invaded by a non-native fish species. We show that invasive sunbleak Leucaspius delineatus is socially more strongly interconnected with native species than the native species with each other. The social networks also reveal characteristics of a ‘small world’ such as low clustering coefficients C and short path lengths L. The findings may indicate potential traits of successful invaders and the implication for the spread of pathogens between individuals within a group of animals that contain a non-native invasive species. The success of establishment and subsequent invasion may be highlighted not only by the capacity of the new species to adapt to the new environment, but also in its capacity to penetrate the social circle of the native community.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.