Abstract

This paper employs algebraic transformation to describe complex social network learning (SNL) behaviors under continuous expected payoff. Three distinct algorithms are then introduced that factor in uncertainty and heterogeneity. We find that individuals' strategies tend to converge through SNL. We then construct a framework for studying the convergence process in the principal–agent relationship by applying our SNL algorithms to distinct scenarios. Our results show that network topology plays a significant role in changes in the payoffs and the convergence speed of individuals' strategies. We also evaluate the impacts of uncertainty, heterogeneity, agents' output efficiency and risk aversion, and individual's centrality on the effectiveness of SNL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.