Abstract
Social Network Analysis (SNA) has become a very interesting research topic with regard to Artificial Intelligence (AI) because a wide range of activities, comprising animate and inanimate entities, can be examined by means of social graphs. Consequently, classification and prediction tasks in SNA remain open problems with respect to AI. Latent representations about social graphs can be effectively exploited for training AI models in a bid to detect clusters via classification of actors as well as predict ties with regard to a given social network. The inherent representations of a social graph are relevant to understanding the nature and dynamics of a given social network. Thus, our research work proposes a unique hybrid model: Representation Learning via Knowledge-Graph Embeddings and ConvNet (RLVECN). RLVECN is designed for studying and extracting meaningful representations from social graphs to aid in node classification, community detection, and link prediction problems. RLVECN utilizes an edge sampling approach for exploiting features of the social graph via learning the context of each actor with respect to its neighboring actors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.