Abstract
PurposeThis study aims to investigate the cybersecurity awareness manifested as protective behavior to explain self-disclosure in social networking sites. The disclosure of information about oneself is associated with benefits as well as privacy risks. The individuals self-disclose to gain social capital and display protective behaviors to evade privacy risks by careful cost-benefit calculation of disclosing information.Design/methodology/approachThis study explores the role of cyber protection behavior in predicting self-disclosure along with demographics (age and gender) and digital divide (frequency of Internet access) variables by conducting a face-to-face survey. Data were collected from 284 participants. The model is validated by using multiple hierarchal regression along with the artificial intelligence approach.FindingsThe results revealed that cyber protection behavior significantly explains the variance in self-disclosure behavior. The complementary use of five machine learning (ML) algorithms further validated the model. The ML algorithms predicted self-disclosure with an area under the curve of 0.74 and an F1 measure of 0.70.Practical implicationsThe findings suggest that costs associated with self-disclosure can be mitigated by educating the individuals to heighten their cybersecurity awareness through cybersecurity training programs.Originality/valueThis study uses a hybrid approach to assess the influence of cyber protection behavior on self-disclosure using expectant valence theory (EVT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.