Abstract
Forensic science is constantly evolving and transforming, reflecting the numerous technological innovations of recent decades. There are, however, continuing issues with the use of digital data, such as the difficulty of handling large-scale collections of text data. As one way of dealing with this problem, we used machine-learning techniques, particularly natural language processing and Latent Dirichlet Allocation (LDA) topic modeling, to create an unsupervised text reduction method that was then used to study social reactions in the aftermath of the 2017 Manchester Arena bombing. Our database was a set of millions of messages posted on Twitter in the first 24 h after the attack. The findings show that our method improves on the tools presently used by law enforcement and other agencies to monitor social media, particularly following an event that is likely to create widespread social reaction. For example, it makes it possible to track different types of social reactions over time and to identify subevents that have a significant impact on public perceptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.