Abstract
Among many by-products of Web 2.0 come the wide range of potential image and text datasets within social media and content sharing platforms that speak of how people live, what they do, and what they care about. These datasets are imperfect and biased in many ways, but those flaws make them complementary to data derived from conventional social science methods and thus potentially useful for triangulation in complex decision-making contexts. Yet the online environment is highly mutable, and so the datasets are less reliable than censuses or other standard data types leveraged in social impact assessment. Over the past decade, we have innovated numerous methods for deploying Instagram datasets in investigating management or development alternatives. This article synthesizes work from three Canadian decision contexts – hydroelectric dam construction or removal; dyke realignment or wetland restoration; and integrating renewable energy into vineyard landscapes – to illustrate some of the methods we have applied to social impact assessment questions using Instagram that may be transferrable to other social media platforms and contexts: thematic (manual coding, machine vision, natural language processing/sentiment analysis, statistical analysis), spatial (hotspot mapping, cultural ecosystem modeling), and visual (word clouds, saliency mapping, collage). We conclude with a set of cautions and next steps for the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.