Abstract

Most choices people make are about 'matters of taste', on which there is no universal, objective truth. Nevertheless, people can learn from the experiences of individuals with similar tastes who have already evaluated the available options-a potential harnessed by recommender systems. We mapped recommender system algorithms to models of human judgement and decision-making about 'matters of fact' and recast the latter as social learning strategies for matters of taste. Using computer simulations on a large-scale, empirical dataset, we studied how people could leverage the experiences of others to make better decisions. Our simulations showed that experienced individuals can benefit from relying mostly on the opinions of seemingly similar people; by contrast, inexperienced individuals cannot reliably estimate similarity and are better off picking the mainstream option despite differences in taste. Crucially, the level of experience beyond which people should switch to similarity-heavy strategies varies substantially across individuals and depends on how mainstream (or alternative) an individual's tastes are and the level of dispersion in taste similarity with the other people in the group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.