Abstract

Schizophrenia is associated with increased oxidative stress, although the source of this redox disequilibrium requires further study. Altered tryptophan metabolism has been described in schizophrenia, possibly linked to inflammation and glutamate-directed excitotoxicity. Social isolation rearing (SIR) in rats induces various behavioural manifestations akin to schizophrenia, as well as altered frontal cortical glutamate N-methyl-d-aspartate (NMDA) receptor binding and increased oxidative stress, all reversed by antipsychotic treatment. Tryptophan is catabolized via the kynurenine pathway to kynurenine, 3-hydroxykynurenine, quinolinic acid (QA), kynurenic acid (KYNA), anthranilic acid and 3-hydroxyanthranilic acid (3-OHAA), ultimately contributing to neuronal integrity and redox balance in the brain. We studied tryptophan metabolism and neuroprotective-neurodegenerative balance in post-natal SIR rats, and its response to clozapine treatment. Male Sprague-Dawley (SD) rats (10 rats/group) were exposed to SIR or social rearing for 8 weeks, whereupon they received either sub-chronic vehicle or clozapine (5 mg/kg i.p) treatment. Plasma tryptophan metabolites were analysed by liquid-chromatography electrospray ionization tandem mass spectrometry. Plasma tryptophan, kynurenine, anthranilic acid, 3-OHAA and QA were significantly elevated in SIR vs. socially housed rats. KYNA and the neuroprotective ratio were significantly decreased. The latter implies a decrease in KYNA (neuroprotective) but an increase in QA (neurodegenerative) directed components of the pathway. Clozapine significantly reversed all the above alterations in SIR animals. Concluding, SIR in rats significantly disrupts tryptophan metabolism via the kynurenine pathway with increased risk for neurodegenerative changes in the brain. These changes are reversed by clozapine, emphasising the importance of these findings for the neurobiology and treatment of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.