Abstract

Identifying symptom-specific convergent mechanisms for neurodevelopmental disorders is a promising strategy in advancing therapies. Here, we show that bidirectional dysregulation of Rac1 activity in the medial prefrontal cortex (mPFC) dictates shared social deficits in mice. Selective upregulation or downregulation of Rac1 activity in glutamatergic or fast-spiking GABAergic neurons results in excessive or inadequate control of excitability combined with a decrease in glutamate or an increase in GABA concentrations and an increase in the GABA/glutamate ratio, which is responsible for social deficits. Notably, the autism model of Shank3B knockout mice exhibits aberrantly enhanced Rac1 activity, reduced glutamate concentrations, and pyramidal neuron excitability in mPFC accompanied with social deficits, which were corrected by either excitatory-neuron-specific downregulation of Rac1 activity or upregulation of neuronal excitability. Thus, this work shows a convergence between genetic autism risk factors, dysregulation of Rac1 signaling, and excitation-inhibition imbalance, enabling mechanism-based stratification of patients with social deficits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call