Abstract

In this paper, a novel framework for optimizing the caching of popular user content at the level of wireless user equipments (UEs) is proposed. The goal is to improve content offloading over wireless device-to-device (D2D) communication links. In the considered network, users belong to different social communities while their UEs form a single multi-hop D2D network. The proposed framework allows us to exploit the multi-community social context of users for improving the local offloading of cached content in a multi-hop D2D network. To model the collaborative effect of a set of UEs on content offloading, a cooperative game between the UEs is formulated. For this game, it is shown that the Shapley value (SV) of each UE effectively captures the impact of this UE on the overall content offloading process. To capture the presence of multiple social communities that connect the UEs, a hypergraph model is proposed. Two line graphs, an influence-weighted graph, and a connectivity-weighted graph, are developed for analyzing the proposed hypergaph model. Using the developed line graphs along with the SV of the cooperative game, a precise offloading power metric is derived for each UE within a multi-community, multi-hop D2D network. Then, UEs with high offloading power are chosen as the optimal locations for caching the popular content. Simulation results show that, on the average, the proposed cache placement framework achieves 12, 19, and 21 percent improvements in terms of the number of UEs that received offloaded popular content compared to the schemes based on betweenness, degree, and closeness centrality, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.