Abstract
We introduce a class of one-dimensional linear kinetic equations of Boltzmann and Fokker–Planck type, describing the dynamics of individuals of a multi-agent society questing for high status in the social hierarchy. At the Boltzmann level, the microscopic variation of the status of agents around a universal desired target, is built up introducing as main criterion for the change of status a suitable value function in the spirit of the prospect theory of Kahneman and Twersky. In the asymptotics of grazing interactions, the solution density of the Boltzmann-type kinetic equation is shown to converge towards the solution of a Fokker–Planck type equation with variable coefficients of diffusion and drift, characterized by the mathematical properties of the value function. The steady states of the statistical distribution of the social status predicted by the Fokker–Planck equations belong to the class of Amoroso distributions with Pareto tails, which correspond to the emergence of a social elite. The details of the microscopic kinetic interaction allow to clarify the meaning of the various parameters characterizing the resulting equilibrium. Numerical results then show that the steady state of the underlying kinetic equation is close to Amoroso distribution even in an intermediate regime in which interactions are not grazing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.