Abstract

Dispersal has consequences not only for individual fitness, but also for population dynamics, population genetics and species distribution. Social Hymenoptera show two contrasting colony reproductive strategies, dependent and independent colony foundation modes, and these are often associated to the population structures derived from inter and intra-population gene flow processes conditioned by alternative dispersal strategies. Here we employ microsatellite and mitochondrial markers to investigate the population and social genetic structure and dispersal patterns in the ant Cataglyphis emmae at both, local and regional scales. We find that C. emmae is monogynous and polyandrous. Lack of detection of any population viscosity and population structure with nuclear markers at the local scale suggests efficient dispersal, in agreement with a lack of inbreeding. Contrasting demographic differences before and during the mating seasons suggest that C. emmae workers raise sexuals in peripheric nest chambers to reduce intracolonial conflicts. The high genetic differentiation recovered from the mtDNA haplotypes, together with the significant correlation of such to geographic distance, and presence of new nuclear alleles between areas (valleys) suggest long-term historical isolation between these regions, indicative of limited dispersal at the regional scale. Our findings on the ecological, social and population structure of this species increases our understanding of the patterns and processes involved under independent colony foundation.

Highlights

  • Dispersal is a pivotal process with important ecological and evolutionary consequences [1]

  • We addressed the following questions: What is the social structure in C. emmae and how does it compare to other species within the genus? Does the observed social structure explain the mating system strategy of this species? How does effective male and female dispersal shape the population structure throughout different scales? Are males responsible for most gene flow at the local scale and is there a correlation of isolation by distance at the local scale?

  • The results are congruent with previous morphological studies suggesting that colonies of C. emmae are founded independently by a single multiply-mated queen though it may be claustral or semi-claustral

Read more

Summary

Introduction

Dispersal is a pivotal process with important ecological and evolutionary consequences [1] In animals, it may be defined as the movement of individuals away from an existing population to a new area where to settle and reproduce. The most ancestral one is independent colony foundation (hereafter, ICF) [11] This is a solitary dispersal mode where virgin queens bearing long wings (macropterous) leave their mother nest by flight to copulate with one or various males (monoandry vs polyandry). Thereafter they shed their wings and start a new colony on their own. The queens, either with small non-functional wings or wingless, either integrate an already established nest, leading to highly polygynous nests which progressively split until forming various independent colonies (i.e. colony budding) or leave the natal nest with a worker force to establish a new independent monogynous colony at a walking distance (i.e. colony fission)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.