Abstract

An accurate battery State of Charge (SOC) estimation has great significance in improving battery life and vehicle performance. An improved second-order battery model is proposed in this paper through quantities of LiFePO4 battery experiments. The parameters of the model were acquired by the HPPC composite pulse condition under different temperature, charging and discharging rates, SOC. Based on the model, battery SOC is estimated by Extended Kalman Filter (EKF). Comparison of three different pulse conditions shows that the average error of SOC estimation of this algorithm is about 4.2%. The improved model is able to reflect the dynamic performance of batteries suitably, and the SOC estimation algorithm is provided with higher accuracy and better dynamic adaptability. DOI: http://dx.doi.org/10.11591/telkomnika.v11i8.2629

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.