Abstract

AbstractWe introduce a new scale of grand variable exponent Lebesgue spaces denoted by . These spaces unify two non‐standard classes of function spaces, namely, grand Lebesgue and variable exponent Lebesgue spaces. The boundedness of integral operators of Harmonic Analysis such as maximal, potential, Calderón–Zygmund operators and their commutators are established in these spaces. Among others, we prove Sobolev‐type theorems for fractional integrals in . The spaces and operators are defined, generally speaking, on quasi‐metric measure spaces with doubling measure. The results are new even for Euclidean spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.