Abstract

Abstract This article aims to establish fractional Sobolev trace inequalities, logarithmic Sobolev trace inequalities, and Hardy trace inequalities associated with time-space fractional heat equations. The key steps involve establishing dedicated estimates for the fractional heat kernel, regularity estimates for the solution of the time-space fractional equations, and characterizing the norm of $\dot {W}^{\nu /2}_p(\mathbb {R}^n)$ in terms of the solution $u(x,t)$ . Additionally, fractional logarithmic Gagliardo–Nirenberg inequalities are proven, leading to $L^p-$ logarithmic Sobolev inequalities for $\dot {W}^{\nu /2}_{p}(\mathbb R^{n})$ . As a byproduct, Sobolev affine trace-type inequalities for $\dot {H}^{-\nu /2}(\mathbb {R}^n)$ and local Sobolev-type trace inequalities for $Q_{\nu /2}(\mathbb {R}^n)$ are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.