Abstract

Two families of invariant tests for independence of random variables on compact Riemannian manifolds are proposed and studied. The tests are based on Gine's Sobolev norms which are obtained by mapping the manifolds into Hilbert spaces. For general compact manifolds, randomization tests are suggested. For the bivariate circular case, distribution-free tests based on uniform scores are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.