Abstract
In this paper, we study closed form evaluation for some special Hankel determinants arising in combinatorial analysis, especially for the bidirectional number sequences. We show that such problems are directly connected with the theory of quasi-definite discrete Sobolev orthogonal polynomials. It opens a lot of procedural dilemmas which we will try to exceed. A few examples deal with Fibonacci numbers and power sequences will illustrate our considerations. We believe that our usage of Sobolev orthogonal polynomials in Hankel determinant computation is quite new.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.