Abstract

We consider the cubic nonlinear Schrödinger equation on 2-dimensional irrational tori. We construct solutions which undergo growth of Sobolev norms. More concretely, for every s>0, s≠1 and almost every choice of spatial periods we construct solutions whose Hs Sobolev norms grow by any prescribed factor. Moreover, for a set of spatial periods with positive Hausdorff dimension we construct solutions whose Sobolev norms go from arbitrarily small to arbitrarily large. We also provide estimates for the time needed to undergo the norm explosion.Note that the irrationality of the space periods decouples the linear resonant interactions into products of 1-dimensional resonances, reducing considerably the complexity of the resonant dynamics usually used to construct transfer of energy solutions.However, one can provide these growth of Sobolev norms solutions by using quasi-resonances relying on Diophantine approximation properties of the space periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.