Abstract

Using optimal mass transport arguments, we prove weighted Sobolev inequalities of the form ∫ E | u ( x ) | q ω ( x ) d x 1 / q ⩽ K 0 ∫ E | ∇ u ( x ) | p σ ( x ) d x 1 / p , u ∈ C 0 ∞ ( R n ) , (WSI)where p ⩾ 1 and q > 0 is the corresponding Sobolev critical exponent. Here E ⊆ R n is an open convex cone, and ω , σ : E → ( 0 , ∞ ) are two homogeneous weights verifying a general concavity-type structural condition. The constant K 0 = K 0 ( n , p , q , ω , σ ) > 0 is given by an explicit formula. Under mild regularity assumptions on the weights, we also prove that K 0 is optimal in (WSI) if and only if ω and σ are equal up to a multiplicative factor. Several previously known results, including the cases for monomials and radial weights, are covered by our statement. Further examples and applications to partial differential equations are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.