Abstract
Calibration refers to the statistical estimation of unknown model parameters in computer experiments, such that computer experiments can match underlying physical systems. This work develops a new calibration method for imperfect computer models, Sobolev calibration, which can rule out calibration parameters that generate overfitting calibrated functions. We prove that the Sobolev calibration enjoys desired theoretical properties including fast convergence rate, asymptotic normality and semiparametric efficiency. We also demonstrate an interesting property that the Sobolev calibration can bridge the gap between two influential methods: L 2 calibration and Kennedy and O’Hagan’s calibration. In addition to exploring the deterministic physical experiments, we theoretically justify that our method can transfer to the case when the physical process is indeed a Gaussian process, which follows the original idea of Kennedy and O’Hagan’s. Numerical simulations as well as a real-world example illustrate the competitive performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.