Abstract

The attribute selection techniques for supervised learning, used in the preprocessing phase to emphasize the most relevant attributes, allow making models of classification simpler and easy to understand. Depending on the method to apply: starting point, search organization, evaluation strategy, and the stopping criterion, there is an added cost to the classification algorithm that we are going to use, that normally will be compensated, in greater or smaller extent, by the attribute reduction in the classification model. The algorithm (SOAP: Selection of Attributes by Projection) has some interesting characteristics: lower computational cost (O(mn log n) m attributes and n examples in the data set) with respect to other typical algorithms due to the absence of distance and statistical calculations; with no need for transformation. The performance of SOAP is analysed in two ways: percentage of reduction and classification. SOAP has been compared to CFS [6] and ReliefF [11]. The results are generated by C4.5 and 1NN before and after the application of the algorithms.KeywordsFeature SelectionFeature SubsetNumeric AttributeAttribute SelectionFeature SelectorThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.