Abstract

Abstract Aqueous OH radical oxidation of methylglyoxal in clouds and wet aerosols is a potentially important global and regional source of secondary organic aerosol (SOA). We quantify organic acid products of the aqueous reaction of methylglyoxal (30–3000 μM) and OH radical (approx. 4 × 10 −12 M), model their formation in the reaction vessel and investigate how the starting concentrations of precursors and the presence of acidic sulfate (0–840 μM) affect product formation. Predicted products were observed. The predicted temporal evolution of oxalic acid, pyruvic acid and total organic carbon matched observations at cloud relevant concentrations (30 μM), validating this methylglyoxal cloud chemistry, which is currently being implemented in some atmospheric models of SOA formation. The addition of sulfuric acid at cloud relevant concentrations had little effect on oxalic acid yields. At higher concentrations (3000 μM), predictions deviate from observations. Larger carboxylic acids (≥C 4 ) and other high molecular weight products become increasingly important as concentration increases, suggesting that small carboxylic acids are the major products in clouds while larger carboxylic acids and oligomers are important products in wet aerosols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.