Abstract

SO2-ethanol-water (SEW) delignification kinetics for spruce, beech, and wheat straw are presented. All these species produce pulps using SEW cooking liquor and follow first order delignification kinetics at similar bulk delignification rates. However, residual delignification is much slower for beech than for spruce. The hemicelluloses retention (135°C) and cellulose degradation kinetics are also characterized for beech SEW pulping. Xylan and glucomannan are removed from the pulp following first-order kinetics with a higher rate constant for xylan. Cellulose is retained in the fibers until kappa number 9, after which it starts to dissolve in the liquor. The yield also drops significantly in the region of kappa numbers 9–7. Cellulose degradation is followed by intrinsic viscosity measurements and is found to be zero order in cellulose. The rates are higher at 135 and 145°C for beech SEW pulping than for spruce.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call