Abstract

The facile and green preparation of novel materials that capture sulfur dioxide (SO2) with significant uptake at room temperature remains challenging, but it is crucial for public health and the environment. Herein, we explored for the first time the SO2 adsorption within microporous metal-organic cages using the palladium(II)-based [Pd6L8](NO3)36 tetragonal prism 1, assembled in water under mild conditions. Notably and despite the low BET surface area of 1 (111 m2 g-1), sulfur dioxide was found to be irreversibly and strongly adsorbed within the activated cage at 298 K (up to 6.07 mmol g-1). The measured values for the molar enthalpy of adsorption (ΔHads) coupled to the FTIR analyses imply a chemisorption process that involves the direct interaction of SO2 with Pd(II) sites and the subsequent oxidation of this toxic chemical by the action of the nitrate anions in 1. To the best of our knowledge, this is the first reported metal-organic cage that proves useful for SO2 adsorption. Metallosupramolecular adsorbents such as 1 could enable new detection applications and suggest that the integration of soft metal ions and self-assembly of molecular cages are a potential means for the easy tuning of SO2 adsorption capabilities and behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.