Abstract

We have performed a combined molecular beam (MB)/infrared reflection absorption spectroscopy (IRAS) and density functional (DF) study on the adsorption of sulfur dioxide (SO2) on clean and oxygen precovered Pt(111). The adsorbate species formed as a function of coverage and their structural and chemical transformations upon subsequent annealing were followed systematically by IRAS. It is shown that, upon adsorption on clean Pt(111) at 100 K, SO2 adsorbs molecularly in two geometries. Calculations reveal that these geometries correspond to molecules oriented parallel or perpendicular to the surface. Upon heating up to 250 K, conversion between the two species occurs with the fraction of upright standing SO2 increasing with increasing temperature. Between 300 and 350 K, all surface species desorb without decomposition. This is in sharp contrast to oxygen precovered Pt(111), on which, in addition to the formation of molecular SO2 in flat and perpendicular geometry, partial formation of SO3 is observed even a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.