Abstract

The paradigm of algebraic constraint-based reasoning, embodied in the notion of a qualitative calculus, is studied within two alternative frameworks. One framework defines a qualitative calculus as “a non-associative relation algebra (NA) with a qualitative representation”, the other as “an algebra generated by jointly exhaustive and pairwise disjoint (JEPD) relations”. These frameworks provide complementary perspectives: the first is intensional (axiom-based), whereas the second one is extensional (based on semantic structures). However, each definition admits calculi that lie beyond the scope of the other. Thus, a qualitatively representable NA may be incomplete or non-atomic, whereas an algebra generated by JEPD relations may have non-involutive converse and no identity element. The divergence of definitions creates a confusion around the notion of a qualitative calculus and makes the “what” question posed by Ligozat and Renz actual once again. Here we define the relation-type qualitative calculus unifying the intensional and extensional approaches. By introducing the notions of weak identity, inference completeness and Q-homomorphism, we give equivalent definitions of qualitative calculi both intensionally and extensionally. We show that “algebras generated by JEPD relations” and “qualitatively representable NAs” are embedded into the class of relation-type qualitative algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.