Abstract

To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6–82.2) SPL rms re 2.10−5 Pa with a peak at 99.2 (85.7–104.6) SPL re 2.10−5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

Highlights

  • Animal communication is driven by competition between individuals and species [1,2,3]

  • I.e. the loudest part of signal, the intensity can reach 100 dB SPL. Whilst these values are far below those estimated for large mammals such as dolphins, whales, elephants, hippos, or bison, when scaled to body size, M. scholtzi has the highest ratio dB/body size

  • Even if such comparison might need to be adjusted with corrections taking into account different recording methods and conditions, M. scholtzi is clearly an extreme outlier with a dB/body size ratio of 31.5 while the mean is at 6.9 and the second highest value is estimated at 19.63 for the snapping shrimp S. parneomeris

Read more

Summary

Introduction

Animal communication is driven by competition between individuals and species [1,2,3]. Body size is one of the main mechanical constraints as a small sound source cannot produce a high level sound output [6,7]. This phenomenon explains why large mammals, such as whales or elephants, are known to be the loudest animals [8,9]. When these animals are scaled to their body size they may not produce the most efficient acoustic signals in terms of energy

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call