Abstract
This paper presents the surrogate model based algorithm SO-I for solving purely integer optimization problems that have computationally expensive black-box objective functions and that may have computationally expensive constraints. The algorithm was developed for solving global optimization problems, meaning that the relaxed optimization problems have many local optima. However, the method is also shown to perform well on many local optimization problems, and problems with linear objective functions. The performance of SO-I, a genetic algorithm, Nonsmooth Optimization by Mesh Adaptive Direct Search (NOMAD), SO-MI (Muller et al. in Comput Oper Res 40(5):1383---1400, 2013), variable neighborhood search, and a version of SO-I that only uses a local search has been compared on 17 test problems from the literature, and on eight realizations of two application problems. One application problem relates to hydropower generation, and the other one to throughput maximization. The numerical results show that SO-I finds good solutions most efficiently. Moreover, as opposed to SO-MI, SO-I is able to find feasible points by employing a first optimization phase that aims at minimizing a constraint violation function. A feasible user-supplied point is not necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.