Abstract

This research examines the efficacy of tin additions to LaNi{sub 5} in improving the hydrogen storage capacity of the material during charging/discharging. Alloys were prepared using high energy ball milling (mechanical alloying), a technique superior to arc casting for alloying elements with a wide disparity in melting points. Characterization by X-ray diffraction and Rietveld analysis shows that tin preferentially occupies the Ni(3g) sites in the LaNi{sub 5} structure, and the unit cell volume increases linearly with tin content to the maximum tin solubility of 7.33 atomic percent (LaNi{sub 4.56}Sn{sub 0.44}). The authors found that powders prepared by mechanical alloying and not exposed to air require no activation to induce hydrogen absorption. The hydrogen storage capacity in the gas and electrochemical phase was measured as a function of tin content. They found that with increasing tin, the plateau pressure decreases logarithmically, whereas the hydrogen storage capacity decreases linearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.