Abstract
Photoresponsivity is a fundamental parameter used to quantify the ability of photoelectric conversion of a photodetector device. High-responsivity photodetectors are essential for numerous optoelectronic applications. Due to the strong light-matter interactions and the high carrier mobility, two-dimensional (2D) materials are promising candidates for the next-generation photodetectors. However, poor light absorption, lack of photoconductive gain, and the interfacial recombination lead to the relatively low responsivity of 2D photodetectors. The photogating effect, which extends the lifetime of photoexcited carriers, provides a simple approach to enhance responsivity in photodetector devices. Here, the O2 plasma treatment introduced surface traps on the SnS2 surface, leading to a gate-tunable photogating effect in SnS2/MoS2 heterojunctions. The heterojunction device exhibits an ultrahigh responsibility of up to 28 A/W. Moreover, the photodetector possesses a wide spectral photoresponse spanning from 300 to 1100 nm and a high specific detectivity (D*) of 4 × 1011 Jones under a 532 nm laser at VDS = 1 V. These results demonstrate that O2 plasma treatment is an efficient and simple avenue to achieve photogating effects, which can be employed to enhance the performance of van der Waals heterostructure photodetector devices and make them suitable for future integration into advanced electronic and optoelectronic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.