Abstract

Tin disulfide is a promising anode material for Li-ion batteries (LIB) owing to its high theoretical capacity and the abundance of its composing elements. However, bare SnS2 suffers from low electrical conductivity and large volume expansion, which results in poor rate performance and cycling stability. Herein, we present a solution-based strategy to grow SnS2 nanostructures within a matrix of porous g-C3N4 (CN) and high electrical conductivity graphite plates (GPs). We test the resulting nanocomposite as anode in LIBs. First, SnS2 nanostructures with different geometries are tested, to find out that thin SnS2 nanoplates (SnS2-NPLs) provide the highest performances. Such SnS2-NPLs, incorporated into hierarchical SnS2/CN/GP nanocomposites, display excellent rate capabilities (536.5 mA h g−1 at 2.0 A g−1) and an outstanding stability (∼99.7% retention after 400 cycles), which are partially associated with a high pseudocapacitance contribution (88.8% at 1.0 mV s−1). The excellent electrochemical properties of these nanocomposites are ascribed to the synergy created between the three nanocomposite components: i) thin SnS2-NPLs provide a large surface for rapid Li-ion intercalation and a proper geometry to stand volume expansions during lithiation/delithiation cycles; ii) porous CN prevents SnS2-NPLs aggregation, habilitates efficient channels for Li-ion diffusion and buffer stresses associated to SnS2 volume changes; and iii) conductive GPs allow an efficient charge transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call