Abstract
In order to develop high performance chemoresistive gas sensors for Internet of Everything applications, low power consumption should be achieved due to the limited battery capacity of portable devices. One of the most efficient ways to reduce power consumption is to lower the operating temperature to room temperature. Herein, we report superior gas sensing properties of SnS2 nanograins on SiO2 nanorods toward NO2 at room temperature. The gas response is as high as 701% for 10 ppm of NO2 with excellent recovery characteristics and the theoretical detection limit is evaluated to be 408.9 ppb at room temperature, which has not been reported for SnS2-based gas sensors to the best of our knowledge. The SnS2 nanograins on the template used in this study have excessive sulfur component (Sn:S = 1:2.33) and exhibit p-type conduction behavior. These results will provide a new perspective of nanostructured two-dimensional materials for gas sensor applications on demand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.