Abstract

Low-light optical coherence tomography (OCT) images generated when using low input power, low-quantum-efficiency detection units, low exposure time, or facing high-reflective surfaces, have low bright and signal-to-noise rates (SNR), and restrict OCT technique and clinical applications. While low input power, low quantum efficiency, and low exposure time can help reduce the hardware requirements and accelerate imaging speed; high-reflective surfaces are unavoidable sometimes. Here we propose a deep-learning-based technique to brighten and denoise low-light OCT images, termed SNR-Net OCT. The proposed SNR-Net OCT deeply integrated a conventional OCT setup and a residual-dense-block U-Net generative adversarial network with channel-wise attention connections trained using a customized large speckle-free SNR-enhanced brighter OCT dataset. Results demonstrated that the proposed SNR-Net OCT can brighten low-light OCT images and remove the speckle noise effectively, with enhancing SNR and maintaining the tissue microstructures well. Moreover, compared to the hardware-based techniques, the proposed SNR-Net OCT can be of lower cost and better performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.