Abstract

A noise elimination method based on an improved particle swarm algorithm is applied to direct absorption spectroscopy. The algorithm combines the theory of spectral line shape to calculate a fitness function according to the original spectra. Comparing the particles and the fitness function to calculate the updating direction, and position of particles, the iterative update finally finds the optimal solution. The algorithm is applied to direct absorption spectroscopy to measure methane; compared with the signal without algorithm processing, the signal-to-noise ratio (SNR) is improved by 4.17 times, and the minimum detection limit in the experiment is 15.3 ppb. R2 = 0.9999 is calculated in the calibration experiment, and the error is less than 0.1 ppm in the repeatability experiment of constant methane at 2 ppm concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.