Abstract
Shearlet transform (ST) can be effective in 2D signal processing, due to its parabolic scaling, high directional sensitivity, and optimal sparsity. ST combined with thresholding has been successfully applied to suppress random noise. However, because of the low magnitude and high frequency of a downhole microseismic signal, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is difficult to use for denoising. In this paper, we present a scale classification ST to solve this problem. The ST is used to decompose noisy microseismic data into serval scales. By analyzing the spectrum and energy distribution of the shearlet coefficients of microseismic data, we divide the scales into two types: low-frequency scales which contain less useful signal and high-frequency scales which contain more useful signal. After classification, we use two different methods to deal with the coefficients on different scales. For the low-frequency scales, the noise is attenuated using a thresholding method. As for the high-frequency scales, we propose to use a generalized Gauss distribution model based a non-local means filter, which takes advantage of the temporal and spatial similarity of microseismic data. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Geophysics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.