Abstract

In a near-field scanning system, each element of the measurement chain contributes to the thermal noise power density: probe, cables, amplifiers, and the measuring instrument. The signal-to-noise ratio (SNR) is strongly affected by the source output impedance, source temperature, the lossy transmission lines between probe and amplifiers, amplifier noise, amplifier temperature, and amplifier gain. By minimizing the loss between the probe and by using ultralow-noise amplifiers (noise figure (NF) 10 dB, compared to a setup using a 1-m cable and a 3-dB NF amplifier. A resonant probe that is cooled with liquid nitrogen improves measurement SNR by an additional 10–12 dB, as compared to a broadband probe of similar loop size. To combine the advantages of a resonant probe, without sacrificing the ability to measure broadband, a proof of concept is demonstrated that uses a tunable resonant probe which is synchronized to the frequency sweep of the spectrum analyzer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.