Abstract
Genetic variations of the human genome are linked to many disease phenotypes. While whole-genome sequencing and genome-wide association studies (GWAS) have uncovered a number of genotype-phenotype associations, their functional interpretation remains challenging given most single nucleotide polymorphisms (SNPs) fall into the non-coding region of the genome. Advances in chromatin immunoprecipitation sequencing (ChIP-seq) have made large-scale repositories of epigenetic data available, allowing investigation of coordinated mechanisms of epigenetic markers and transcriptional regulation and their influence on biological function. To address this, we propose SNPs2ChIP, a method to infer biological functions of non-coding variants through unsupervised statistical learning methods applied to publicly-available epigenetic datasets. We systematically characterized latent factors by applying singular value decomposition to ChIP-seq tracks of lymphoblastoid cell lines, and annotated the biological function of each latent factor using the genomic region enrichment analysis tool. Using these annotated latent factors as reference, we developed SNPs2ChIP, a pipeline that takes genomic region(s) as an input, identifies the relevant latent factors with quantitative scores, and returns them along with their inferred functions. As a case study, we focused on systemic lupus erythematosus and demonstrated our method's ability to infer relevant biological function. We systematically applied SNPs2ChIP on publicly available datasets, including known GWAS associations from the GWAS catalogue and ChIP-seq peaks from a previously published study. Our approach to leverage latent patterns across genome-wide epigenetic datasets to infer the biological function will advance understanding of the genetics of human diseases by accelerating the interpretation of non-coding genomes.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.