Abstract

BackgroundThe capability of correlating specific genotypes with human diseases is a complex issue in spite of all advantages arisen from high-throughput technologies, such as Genome Wide Association Studies (GWAS). New tools for genetic variants interpretation and for Single Nucleotide Polymorphisms (SNPs) prioritization are actually needed. Given a list of the most relevant SNPs statistically associated to a specific pathology as result of a genotype study, a critical issue is the identification of genes that are effectively related to the disease by re-scoring the importance of the identified genetic variations. Vice versa, given a list of genes, it can be of great importance to predict which SNPs can be involved in the onset of a particular disease, in order to focus the research on their effects.ResultsWe propose a new bioinformatics approach to support biological data mining in the analysis and interpretation of SNPs associated to pathologies. This system can be employed to design custom genotyping chips for disease-oriented studies and to re-score GWAS results. The proposed method relies (1) on the data integration of public resources using a gene-centric database design, (2) on the evaluation of a set of static biomolecular annotations, defined as features, and (3) on the SNP scoring function, which computes SNP scores using parameters and weights set by users. We employed a machine learning classifier to set default feature weights and an ontological annotation layer to enable the enrichment of the input gene set. We implemented our method as a web tool called SNPranker 2.0 (http://www.itb.cnr.it/snpranker), improving our first published release of this system. A user-friendly interface allows the input of a list of genes, SNPs or a biological process, and to customize the features set with relative weights. As result, SNPranker 2.0 returns a list of SNPs, localized within input and ontologically enriched genes, combined with their prioritization scores.ConclusionsDifferent databases and resources are already available for SNPs annotation, but they do not prioritize or re-score SNPs relying on a-priori biomolecular knowledge. SNPranker 2.0 attempts to fill this gap through a user-friendly integrated web resource. End users, such as researchers in medical genetics and epidemiology, may find in SNPranker 2.0 a new tool for data mining and interpretation able to support SNPs analysis. Possible scenarios are GWAS data re-scoring, SNPs selection for custom genotyping arrays and SNPs/diseases association studies.

Highlights

  • The capability of correlating specific genotypes with human diseases is a complex issue in spite of all advantages arisen from high-throughput technologies, such as Genome Wide Association Studies (GWAS)

  • The evaluation of Single Nucleotide Polymorphisms (SNPs) is very promising, because they represent established single base variations with respect to the wild type, and their knowledge can be exploited to characterize each subject by associating a specific phenotype with the corresponding genomic pattern

  • SNP knowledge is widely exploited for Genome Wide Association Studies (GWAS) [5,6,7], identification of Copy Number Variations (CNV) [8], and observations about Population Stratification [9]

Read more

Summary

Introduction

The capability of correlating specific genotypes with human diseases is a complex issue in spite of all advantages arisen from high-throughput technologies, such as Genome Wide Association Studies (GWAS). Given a list of the most relevant SNPs statistically associated to a specific pathology as result of a genotype study, a critical issue is the identification of genes that are effectively related to the disease by re-scoring the importance of the identified genetic variations. The evaluation of Single Nucleotide Polymorphisms (SNPs) is very promising, because they represent established single base variations with respect to the wild type, and their knowledge can be exploited to characterize each subject by associating a specific phenotype with the corresponding genomic pattern. LD mapping is used to optimize the experimental information content by containing the number of probes employed for the genotype analysis into 1 million of TAG SNPs

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call