Abstract
Phytophthora infestans, the cause of the devastating late blight disease of potato and tomato, exhibits a clonal reproductive lifestyle in North America. Phenotypes such as fungicide sensitivity and host preference are conserved among individuals within clonal lineages, while substantial phenotypic differences can exist between lineages. Whole P. infestans genomes were aligned and single nucleotide polymorphisms (SNPs) identified as targets for the development of clonal-lineage-specific molecular diagnostic tools. Informative SNPs were used to develop high-resolution melt (HRM) assays and locked nucleic acid (LNA) probes to differentiate lineage US-23, the predominant lineage in the Eastern United States for the past several years, from three other U.S. lineages. Three different primer pairs targeting one to three SNPs were capable of separating lineage US-23 from lineages US-8, US-11, and US-24 using HRM analysis. A fourth HRM primer pair targeted a highly variable genomic region containing nine polymorphisms within 63 bp. These primers separated US-23, US-11, and US-8 plus US-24 into three separate groups following HRM analysis but did not separate US-8 from US-24. Additionally, two LNA probes were designed to target a portion of the P. infestans genome containing two SNPs diagnostic for US-23. A single multiplex quantitative polymerase chain reaction assay containing both differentially labeled LNA probes differentiated individuals belonging to lineage US-23 from those belonging to US-8, US-11, and US-24.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.