Abstract

Purpose: Genetic polymorphisms in the N-acetyltransferase 2 gene determine the individual acetylator status, which influences both the toxicity and efficacy profile of acetylated drugs. Determination of an individual's acetylation phenotype prior to initiation of therapy, through DNA-based tests, should permit to improve therapy response and reduce adverse events. However, due to extensive linkage disequilibrium between markers within NAT2, the genotyping of closely spaced markers yields highly redundant data: testing them all is expensive and often unnecessary. The objective of this study is to establish the optimal strategy to define, in the genetic context of a given ethnic group, the most informative set of single-nucleotide polymorphisms that best enables accurate prediction of acetylation phenotype.Methods: Three classification methods have been investigated (classification trees, artificial neural networks and multifactor dimensionality reduction method) in order to find the optimal set of single-nucleotide polymorphisms enabling the most efficient classification of individuals in rapid and slow acetylators.Results: Our results show that, in almost all population samples, only one or two single-nucleotide polymorphisms would be enough to obtain a good predictive capacity with no or only a modest reduction in power relative to direct assays of all common markers. In contrast, in Black African populations, where lower levels of linkage disequilibrium are observed at NAT2, a larger number of single-nucleotide polymorphisms are required to predict acetylation phenotype.Conclusion: The results of this study will be helpful for the design of time- and cost-effective pharmacogenetic tests (adapted to specific populations) that could be used as routine tools in clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.