Abstract

BackgroundThe goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence. The second-generation MAS products were assessed for impact on ascites phenotype and whether there were associated changes in important production traits. Previously, we used whole genome resequencing (WGR) to fine-map 28 chromosomal regions as associated with ascites phenotype in our experimental ascites broiler line (Relaxed, REL) based on a hypobaric chamber challenge. Genotypes for single nucleotide polymorphisms (SNPs) in mapped regions on chromosomes 2 and 22, were used for MAS in our REL line. After two generations, birds homozygous for the genotypes associated with resistance for both chromosomal regions were established. The MAS F2 generation was then compared to the REL line for ascites susceptibility and 25 production traits.ResultsSelection based on SNPs in the carboxypeptidase Q (CPQ, Gga2) and leucine rich repeat transmembrane neuronal 4 (LRRTM4, Gga22) gene regions resulted in a sex- and simulated altitude- dependent reduction of ascites incidence in two F2 cohorts of the MAS line. Comparisons of the F2 MAS and REL lines for production traits when reared at ambient pressure found no significant negative impacts for feed intake (FI), feed conversion ratio (FCR), or deboned part yields for either sex for two F2 cohorts. There were, however, improvements in the MAS for full-trial body weight gain (BWG), FCR, absolute and relative tender weights, and relative drumstick weight.ConclusionsThese results validate the mapping of the 28 chromosomal regions and demonstrate that fine mapping by WGR is an effective strategy for addressing a complex trait; it also stands as the first successful SNP-based selection program against a complex disease trait, such as ascites. The MAS line is comparable and, in some instances, superior, in growth performance to the REL control while being more resistant to ascites. This study indicates that MAS based on WGR can provide significant breeding potential in agricultural systems.

Highlights

  • The goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence

  • First‐generation breeding Breeders for the first parent generation were selected from REL breeder stock in July of 2018

  • Two ­P0 crosses were created: one consisting of birds with all non-reference single nucleotide polymorphisms (SNPs) for each gene region, designated ­P0–1, and the other consisting of birds with nonreference SNPs for carboxypeptidase Q (CPQ) and heterozygous for SNPs for leucine-rich repeat transmembrane neuronal 4 (LRRTM4), designated ­P0–2. ­P0–1 consisted of 10 males and 13 females; ­P0–2 consisted of 12 males and 24 females

Read more

Summary

Introduction

The goal of this study was to evaluate marker-assisted selection (MAS) in broiler chickens using previously mapped gene regions associated with ascites syndrome incidence. We used whole genome resequencing (WGR) to fine-map 28 chromosomal regions as associated with ascites phenotype in our experimental ascites broiler line (Relaxed, REL) based on a hypobaric chamber challenge. Genotypes for single nucleotide polymorphisms (SNPs) in mapped regions on chromosomes 2 and 22, were used for MAS in our REL line. The MAS ­F2 generation was compared to the REL line for ascites susceptibility and 25 production traits. As ascites is estimated to have a relatively high heritability with reports ranging from 0.22 to 0.41, it is logical that increased ascites resistance through genetic selection could have significant advantages and increase production potential [4, 11, 38,39,40]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.